336 research outputs found

    Young "Dipper" Stars in Upper Sco and ρ\rho Oph Observed by K2

    Get PDF
    We present ten young (\lesssim10 Myr) late-K and M dwarf stars observed in K2 Campaign 2 that host protoplanetary disks and exhibit quasi-periodic or aperiodic dimming events. Their optical light curves show \sim10-20 dips in flux over the 80-day observing campaign with durations of \sim0.5-2 days and depths of up to \sim40%. These stars are all members of the ρ\rho Ophiuchus (\sim1 Myr) or Upper Scorpius (\sim10 Myr) star-forming regions. To investigate the nature of these "dippers" we obtained: optical and near-infrared spectra to determine stellar properties and identify accretion signatures; adaptive optics imaging to search for close companions that could cause optical variations and/or influence disk evolution; and millimeter-wavelength observations to constrain disk dust and gas masses. The spectra reveal Li I absorption and Hα\alpha emission consistent with stellar youth (<50 Myr), but also accretion rates spanning those of classical and weak-line T Tauri stars. Infrared excesses are consistent with protoplanetary disks extending to within \sim10 stellar radii in most cases; however, the sub-mm observations imply disk masses that are an order of magnitude below those of typical protoplanetary disks. We find a positive correlation between dip depth and WISE-2 excess, which we interpret as evidence that the dipper phenomenon is related to occulting structures in the inner disk, although this is difficult to reconcile with the weakly accreting aperiodic dippers. We consider three mechanisms to explain the dipper phenomenon: inner disk warps near the co-rotation radius related to accretion; vortices at the inner disk edge produced by the Rossby Wave Instability; and clumps of circumstellar material related to planetesimal formation.Comment: Accepted to ApJ, 19 pages, 10 figure

    Fundamental Properties of Cool Stars with Interferometry

    Full text link
    We present measurements of fundamental astrophysical properties of nearby, low-mass, K- and M-dwarfs from our DISCOS survey (DIameterS of COol Stars). The principal goal of our study is the determination of linear radii and effective temperatures for these stars. We calculate their radii from angular diameter measurements using the CHARA Array and Hipparcos distances. Combined with bolometric flux measurements based on literature photometry, we use our angular diameter results to calculate their effective surface temperatures. We present preliminary results established on an assortment of empirical relations to the stellar effective temperature and radius that are based upon these measurements. We elaborate on the discrepancy seen between theoretical and observed stellar radii, previously claimed to be related to stellar activity and/or metallicity. Our preliminary conclusion, however, is that convection plays a larger role in the determination of radii of these late-type stars. Understanding the source of the radius disagreement is likely to impact other areas of study for low-mass stars, such as the detection and characterization of extrasolar planets in the habitable zones.Comment: Contribution to Proceedings of Cool Stars 16 Workshop; 8 pages in ASP format; 9 figure

    Image Retrieval with Mixed Initiative and Multimodal Feedback

    Get PDF
    How would you search for a unique, fashionable shoe that a friend wore and you want to buy, but you didn't take a picture? Existing approaches propose interactive image search as a promising venue. However, they either entrust the user with taking the initiative to provide informative feedback, or give all control to the system which determines informative questions to ask. Instead, we propose a mixed-initiative framework where both the user and system can be active participants, depending on whose initiative will be more beneficial for obtaining high-quality search results. We develop a reinforcement learning approach which dynamically decides which of three interaction opportunities to give to the user: drawing a sketch, providing free-form attribute feedback, or answering attribute-based questions. By allowing these three options, our system optimizes both the informativeness and exploration capabilities allowing faster image retrieval. We outperform three baselines on three datasets and extensive experimental settings.Comment: In submission to BMVC 201

    A new interferometric study of four exoplanet host stars : {\theta} Cygni, 14 Andromedae, {\upsilon} Andromedae and 42 Draconis

    Get PDF
    Studying exoplanet host stars is of the utmost importance to establish the link between the presence of exoplanets around various types of stars and to understand the respective evolution of stars and exoplanets. Using the limb-darkened diameter (LDD) obtained from interferometric data, we determine the fundamental parameters of four exoplanet host stars. We are particularly interested in the F4 main-sequence star, {\theta} Cyg, for which Kepler has recently revealed solar-like oscillations that are unexpected for this type of star. Furthermore, recent photometric and spectroscopic measurements with SOPHIE and ELODIE (OHP) show evidence of a quasi-periodic radial velocity of \sim150 days. Models of this periodic change in radial velocity predict either a complex planetary system orbiting the star, or a new and unidentified stellar pulsation mode. We performed interferometric observations of {\theta} Cyg, 14 Andromedae, {\upsilon} Andromedae and 42 Draconis for two years with VEGA/CHARA (Mount Wilson, California) in several three-telescope configurations. We measured accurate limb darkened diameters and derived their radius, mass and temperature using empirical laws. We obtain new accurate fundamental parameters for stars 14 And, {\upsilon} And and 42 Dra. We also obtained limb darkened diameters with a minimum precision of \sim 1.3%, leading to minimum planet masses of Msini=5.33\pm 0.57, 0.62 \pm 0.09 and 3.79\pm0.29 MJup for 14 And b, {\upsilon} And b and 42 Dra b, respectively. The interferometric measurements of {\theta} Cyg show a significant diameter variability that remains unexplained up to now. We propose that the presence of these discrepancies in the interferometric data is caused by either an intrinsic variation of the star or an unknown close companion orbiting around it.Comment: 10 pages + 2 pages appendix, 16 figures, accepted for publication in A&

    Radial Velocities of Six OB Stars

    Full text link
    We present new results from a radial velocity study of six bright OB stars with little or no prior measurements. One of these, HD 45314, may be a long-period binary, but the velocity variations of this Be star may be related to changes in its circumstellar disk. Significant velocity variations were also found for HD 60848 (possibly related to nonradial pulsations) and HD 61827 (related to wind variations). The other three targets, HD 46150, HD 54879, and HD 206183, are constant velocity objects, but we note that HD 54879 has Hα\alpha emission that may originate from a binary companion. We illustrate the average red spectrum of each target.Comment: Accepted for publication in PASP July 2007 issu

    Host Star Properties And Transit Exclusion For The HD 38529 Planetary System

    Get PDF
    The transit signature of exoplanets provides an avenue through which characterization of exoplanetary properties may be undertaken, such as studies of mean density, structure, and atmospheric composition. The Transit Ephemeris Refinement and Monitoring Survey is a program to expand the catalog of transiting planets around bright host stars by refining the orbits of known planets discovered with the radial velocity technique. Here we present results for the HD 38529 system. We determine fundamental properties of the host star through direct interferometric measurements of the radius and through spectroscopic analysis. We provide new radial velocity measurements that are used to improve the Keplerian solution for the two known planets, and we find no evidence for a previously postulated third planet. We also present 12 years of precision robotic photometry of HD 38529 that demonstrate the inner planet does not transit and the host star exhibits cyclic variations in seasonal mean brightness with a timescale of approximately six years

    The CHARA Array Angular Diameter of HR 8799 Favors Planetary Masses for Its Imaged Companions

    Get PDF
    HR 8799 is an hF0 mA5 gamma Doradus, lambda Bootis, Vega-type star best known for hosting four directly imaged candidate planetary companions. Using the CHARA Array interferometer, we measure HR 8799's limb-darkened angular diameter to be 0.342 +/- 0.008 mas; this is the smallest interferometrically measured stellar diameter to date, with an error of only 2%. By combining our measurement with the star's parallax and photometry from the literature, we greatly improve upon previous estimates of its fundamental parameters, including stellar radius (1.44 +/- 0.06 R_Sun), effective temperature (7193 +/- 87 K, consistent with F0), luminosity (5.05 +/- 0.29 L_Sun), and the extent of the habitable zone (1.62 AU to 3.32 AU). These improved stellar properties permit much more precise comparisons with stellar evolutionary models, from which a mass and age can be determined, once the metallicity of the star is known. Considering the observational properties of other lambda Bootis stars and the indirect evidence for youth of HR 8799, we argue that the internal abundance, and what we refer to as the effective abundance, is most likely near-solar. Finally, using the Yonsei-Yale evolutionary models with uniformly scaled solar-like abundances, we estimate HR 8799's mass and age considering two possibilities: 1.516 +0.038/-0.024 M_Sun and 33 +7/-13 Myr if the star is contracting toward the zero age main-sequence or 1.513 +0.023/-0.024 M_Sun and 90 +381/-50 Myr if it is expanding from it. This improved estimate of HR 8799's age with realistic uncertainties provides the best constraints to date on the masses of its orbiting companions, and strongly suggests they are indeed planets. They nevertheless all appear to orbit well outside the habitable zone of this young star.Comment: Accepted for publication in ApJ; 37 pages, 6 tables, 13 figure

    The non-uniform, dynamic atmosphere of Betelgeuse observed at mid-infrared wavelengths

    Get PDF
    We present an interferometric study of the continuum surface of the red supergiant star Betelgeuse at 11.15 microns wavelength, using data obtained with the Berkeley Infrared Spatial Interferometer each year between 2006 and 2010. These data allow an investigation of an optically thick layer within 1.4 stellar radii of the photosphere. The layer has an optical depth of ~1 at 11.15 microns, and varies in temperature between 1900 K and 2800 K and in outer radius between 1.16 and 1.36 stellar radii. Electron-hydrogen atom collisions contribute significantly to the opacity of the layer. The layer has a non-uniform intensity distribution that changes between observing epochs. These results indicate that large-scale surface convective activity strongly influences the dynamics of the inner atmosphere of Betelgeuse, and mass-loss processes.Comment: 13 pages, 5 figures, in press (ApJ

    The Long Period, Massive Binaries HD 37366 and HD 54662: Potential Targets for Long Baseline Optical Interferometry

    Full text link
    We present the results from an optical spectroscopic analysis of the massive stars HD 37366 and HD 54662. We find that HD 37366 is a double-lined spectroscopic binary with a period of 31.8187 +/- 0.0004 days, and HD 54662 is also a double lined binary with a much longer period of 557.8 +/- 0.3 days. The primary of HD 37366 is classified as O9.5 V, and it contributes approximately two-thirds of the optical flux. The less luminous secondary is a broad-lined, early B-type main-sequence star. Tomographic reconstruction of the individual spectra of HD 37366 reveals absorption lines present in each component, enabling us to constrain the nature of the secondary and physical characteristics of both stars. Tomographic reconstruction was not possible for HD 54662; however, we do present mean spectra from our observations that show that the secondary component is approximately half as bright as the primary. The observed spectral energy distributions (SEDs) were fit with model SEDs and galactic reddening curves to determine the angular sizes of the stars. By assuming radii appropriate for their classifications, we determine distance ranges of 1.4 - 1.9 and 1.2 - 1.5 kpc for HD 37366 and HD 54662, respectively.Comment: 27 pages, 8 figures, Accepted for publication in Ap
    corecore